お勉強メモ

経済学・計量経済学・統計学などのお勉強メモです。

統計学メモ:2変量正規分布

・本稿の内容
2変量正規分布についての基本事項をメモします。

・本文

Ⅰ: 2変量正規分布の同時確率密度関数

確率変数ベクトル\boldsymbol{x} = 
\left(\begin{array}{c}
x_1\\ 
x_2\\
\end{array}\right)が平均ベクトル\boldsymbol{\mu} =\left(\begin{array}{c}
\mu_1\\
\mu_2\\
\end{array}\right)
,分散共分散行列\boldsymbol{\Sigma}=\begin{pmatrix}
\sigma_{11} & \sigma_{12}\\
\sigma_{21} & \sigma_{22}\\
\end{pmatrix}の2変量正規分布に従うとき、



\boldsymbol{x} = 
\left(\begin{array}{c}
x_1\\ 
x_2\\
\end{array}\right)
\sim N(\boldsymbol{\mu},\boldsymbol{\Sigma})=
N
\left
(
\left(\begin{array}{c}
\mu_1\\
\mu_2\\
\end{array}\right)
,
\begin{pmatrix}
\sigma_{11} & \sigma_{12}\\
\sigma_{21} & \sigma_{22}\\
\end{pmatrix}
\right
)・・・①

と書く。

2変量正規分布確率密度関数


f(\boldsymbol{x})=\dfrac{1}{(\sqrt{2\pi})^{2}\sqrt{\mid \boldsymbol{\Sigma} \mid}}exp\left[-\dfrac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]・・・②

と書ける。②式をベクトル表記、行列表記を用いずに、スカラー表記で書き換えてみる。(※\mid \boldsymbol{\Sigma} \mid\boldsymbol{\Sigma}行列式。)

ここで


\mid \boldsymbol{\Sigma} \mid = 
\sigma_{11}\sigma_{22}-\sigma_{12}\sigma_{21}・・・③

である。\sigma_{12}=\sigma_{21}\sigma_{12}^2=\rho_{12}^{2}\sigma_{11}\sigma_{22}(※\rho_{12}は相関係数)に注意してさらに書き直すと


\begin{eqnarray}
\mid \boldsymbol{\Sigma} \mid
&=& 
\sigma_{11}\sigma_{22}-\sigma_{12}\sigma_{21}\\
&=&
\sigma_{11}\sigma_{22}-\rho_{12}^{2}\sigma_{11}\sigma_{22}\\
&=&
\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})・・・④\\
\end{eqnarray}

と書ける。④式を利用して、\boldsymbol{\Sigma}^{-1}を求める。


\begin{eqnarray}
\boldsymbol{\Sigma}^{-1} 
&=& \dfrac{1}{\mid \boldsymbol{\Sigma} \mid}
\begin{pmatrix}
\sigma_{22} & {-}\sigma_{12}\\
{-}\sigma_{21} & \sigma_{11}\\
\end{pmatrix}\\
&=&
\dfrac{1}{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}
\begin{pmatrix}
\sigma_{22} & {-}\sigma_{12}\\
{-}\sigma_{21} & \sigma_{11}\\
\end{pmatrix}・・・⑤\\
\end{eqnarray}

⑤式を用いて、②式の(\boldsymbol{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})を計算する。


\begin{eqnarray}
(\boldsymbol{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})
&=&
(x_{1}-\mu_{1},x_{2}-\mu_{2})\boldsymbol{\Sigma}^{-1}\left(\begin{array}{c}
x_1-\mu_{1}\\ 
x_2-\mu_{2}\\
\end{array}\right)\\
&=&
\dfrac{1}{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}
(x_{1}-\mu_{1},x_{2}-\mu_{2})
\begin{pmatrix}
\sigma_{22} & {-}\sigma_{12}\\
{-}\sigma_{21} & \sigma_{11}\\
\end{pmatrix}
\left(\begin{array}{c}
x_1-\mu_{1}\\ 
x_2-\mu_{2}\\
\end{array}\right)\\
&=&
\dfrac{1}{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}
[\sigma_{22}(x_{1}-\mu_{1})-\sigma_{21}(x_{2}-\mu_{2}),-\sigma_{12}(x_{1}-\mu_{1})+\sigma_{11}(x_{2}-\mu_{2})]
\left(\begin{array}{c}
x_1-\mu_{1}\\ 
x_2-\mu_{2}\\
\end{array}\right)\\
&=&
\dfrac{1}{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}
[\sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}   ]・・・⑥\\
\end{eqnarray}

④式と⑥式を用いて②式を書き直すと②式のスカラー表記版の式が得られる。


\begin{eqnarray}
f(\boldsymbol{x})&=&\dfrac{1}{(\sqrt{2\pi})^{2}\sqrt{\mid \boldsymbol{\Sigma} \mid}}exp\left[-\dfrac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]\\
&=&
\dfrac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}}exp\left[-\dfrac{1}{2\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}\left\lbrace \sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}  \right\rbrace\right]・・・⑦
\end{eqnarray}

Ⅱ: 2変量正規分布の周辺確率密度関数

x_{1}の周辺確率密度関数f(x_{1})=\int_{-\infty}^{\infty}f(x_{1},x_{2})dx_{2}を求める。⑦式を用いるとx_{1}の周辺確率密度関数


\begin{equation}
\begin{split}
f(x_{1})
&=\dfrac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}}\\
&\quad×\int_{-\infty}^{\infty}exp\left[-\dfrac{1}{2\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}\left\lbrace \sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}  \right\rbrace\right]dx_{2}・・・⑧
\end{split}
\end{equation}

と書ける。ここで⑧式右辺の\lbrace\rbraceのなかに注目し、式変形を行う。


\left\lbrace \sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}  \right\rbrace\\
=\left\lbrace \rho_{12}^{2}\sigma_{22}(x_{1}-\mu_{1})^{2}+(1-\rho_{12}^{2})\sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}  \right\rbrace・・・⑨

⑨式を⑧式に当てはめ、⑧式のexp(1-\rho_{12}^{2})\sigma_{22}(x_{1}-\mu_{1})^{2}の部分を\intの外側に出し、式を整理する。



\begin{equation}
\begin{split} 
f(x_{1})&=\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{11}}}exp\left[ -\dfrac{(x_{1}-\mu_{1})^{2}}{2\sigma_{11}}\right]\int_{-\infty}^{\infty}\dfrac{1}{\sqrt{2\pi}\sqrt{1-\rho_{12}^{2}}\sqrt{\sigma_{22}}}\\


&\quad ×exp\left[-\dfrac{1}{2\sigma_{22}(1-\rho_{12}^{2})}\left\lbrace (x_{2}-\mu_{2})-\rho_{12}^{2}\dfrac{\sqrt{\sigma_{22}}}{\sqrt{\sigma_{11}}}(x_{1}-\mu_{1}) \right\rbrace ^{2}\right]dx_{2}・・・⑩
\end{split} 
\end{equation}

⑩式の積分N\left(\mu_{1}+\rho_{12}^{2}\dfrac{\sqrt{\sigma_{22}}}{\sqrt{\sigma_{11}}}(x_{1}-\mu_{1}),\sigma_{22}(1-\rho_{12}^{2})\right)に従う確率変数の確率密度関数-\inftyから\inftyまでを積分しているから、積分の値は1である。

よって



f(x_1)=\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{11}}}exp\left[ -\dfrac{(x_{1}-\mu_{1})^{2}}{2\sigma_{11}}\right]・・・⑪

となる。同様にしてf(x_2)



f(x_2)=\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{22}}}exp\left[ -\dfrac{(x_{2}-\mu_{2})^{2}}{2\sigma_{22}}\right]・・・⑫

となる。

Ⅲ: 2変量正規分布の条件付き期待値、分散

x_1の条件付き期待値E[ x_1 \mid x_2],条件付き分散V[ x_1 \mid x_2]を求める。
x_1の条件付き分布は



f(x_1\mid x_2)=\dfrac{f(x_1,x_2)}{f(x_2)}

である。本稿では⑦式が分子、⑫式が分母に対応する。⑦式と⑫式を用いて計算を進める。




\begin{equation}
\begin{split} 
f(x_1\mid x_2)&=\dfrac{f(x_1,x_2)}{f(x_2)}\\
&=\dfrac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}}exp\left[-\dfrac{1}{2\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}\left\lbrace \sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}  \right\rbrace\right]\\
 & \quad ÷\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{22}}}exp\left[ -\dfrac{(x_{2}-\mu_{2})^{2}}{2\sigma_{22}}\right]\\
&=\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{11}(1-\rho_{12}^{2})}}\\
 & \quad ×exp\left[-\dfrac{1}{2\sigma_{11}\sigma_{22}(1-\rho_{12}^{2})}\left\lbrace \sigma_{22}(x_{1}-\mu_{1})^{2} -2\sigma_{12}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\sigma_{11}(x_{2}-\mu_{2})^{2}-\sigma_{11}(1-\rho_{12}^{2})(x_{2}-\mu_{2})^{2}  \right\rbrace\right]\\
&=\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{11}(1-\rho_{12}^{2})}}\\
 & \quad ×exp\left[-\dfrac{1}{2\sigma_{11}(1-\rho_{12}^{2})}\left\lbrace (x_{1}-\mu_{1})^{2} -2\dfrac{\sigma_{12}}{\sigma_{22}}(x_{1}-\mu_{1})(x_{2}-\mu_{2})+\dfrac{\sigma_{11}}{\sigma_{22}}\rho_{12}^{2}(x_{2}-\mu_{2})^{2}  \right\rbrace\right]\\
&=\dfrac{1}{\sqrt{2\pi}\sqrt{\sigma_{11}(1-\rho_{12}^{2})}}\\
 & \quad ×exp\left[-\dfrac{1}{2\sigma_{11}(1-\rho_{12}^{2})}\left\lbrace (x_{1}-\mu_{1})+\dfrac{\sqrt{\sigma_{11}}}{\sqrt{\sigma_{22}}}\rho_{12}(x_{2}-\mu_{2})  \right\rbrace ^{2}\right]・・・⑬\\
\end{split} 
\end{equation}

⑬式の形より、条件付き期待値と条件付き分散は



E[ x_1 \mid x_2]=\mu_{1}+\dfrac{\sqrt{\sigma_{11}}}{\sqrt{\sigma_{22}}}\rho_{12}(x_{2}-\mu_{2})\\
V[ x_1 \mid x_2]=\sigma_{11}(1-\rho_{12}^{2})

となる。